Generalized spectral decomposition for stochastic nonlinear problems
نویسندگان
چکیده
We present an extension of the Generalized Spectral Decomposition method for the resolution of non-linear stochastic problems. The method consists in the construction of a reduced basis approximation of the Galerkin solution and is independent of the stochastic discretization selected (polynomial chaos, stochastic multi-element or multiwavelets). Two algorithms are proposed for the sequential construction of the successive generalized spectral modes. They involve decoupled resolutions of a series of deterministic and low dimensional stochastic problems. Compared to the classical Galerkin method, the algorithms allow for significant computational savings and require minor adaptations of the deterministic codes. The methodology is detailed and tested on two model problems, the one-dimensional steady viscous Burgers equation and a two-dimensional non-linear diffusion problem. These examples demonstrate the effectiveness of the proposed algorithms which exhibit convergence rates with the number of modes essentially dependent on the spectrum of the stochastic solution but independent of the dimension of the stochastic approximation space.
منابع مشابه
A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملProper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems
Uncertainty quanti cation and propagation in physical systems appear as a critical path for the improvement of the prediction of their response. Galerkin-type spectral stochastic methods provide a general framework for the numerical simulation of physical models driven by stochastic partial di erential equations. The response is searched in a tensor product space, which is the product of determ...
متن کاملA generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations
We propose a new robust technique for solving a class of linear stochastic partial differential equations. The solution is approximated by a series of terms, each of which being the product of a scalar stochastic function by a deterministic function. None of these functions are fixed a priori but determined by solving a problem which can be interpreted as an ”extended” eigenvalue problem. This ...
متن کاملGeneralized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms
Stochastic Galerkin methods have become a significant tool for the resolution of stochastic partial differential equations (SPDE). However, they suffer from prohibitive computational times and memory requirements when dealing with large scale applications and high stochastic dimensionality. Some alternative techniques, based on the construction of suitable reduced deterministic or stochastic ba...
متن کاملL-shaped decomposition of two-stage stochastic programs with integer recourse
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009